In Conversation with Mark McCourt

on 26 March 2021
Blog Title

Mark McCourt founded La Salle Education with a view to bringing together teachers across the world and uniting them in a mission to improve mathematics education for all pupils. It’s an ambitious goal - but one he is en route to achieving. Undeterred by the challenges Covid has posed, more than 10,000 teachers have shared ideas and learned from one another at La Salle events in the past twelve months. I joined the team just in time for #MathsConf25, which proved the perfect introduction to the energy and potential within our community.

For Mark, La Salle Education is much more than an EdTech company — it is the culmination of decades of experience in the world of education at every level. Mark’s belief in the passion and skill of the existing teacher workforce infuses every element of La Salle, from the growth of the Teacher CPD College to the open platform offered by MathsConf, at which teachers at every stage of their career are invited to share their insights.

As the newest member of the team, I was keen to learn more about the educational philosophies and beliefs which underpin La Salle Education - so I put some questions to Mark. Our conversation is a compelling reminder of the importance of mathematics, and the role teachers can play in transforming pupils’ lives.

Hannah: Tell me about the story of La Salle Education - how and why did you first decide to create it?

Mark: I had been running large-scale education reform programmes for government here in the UK and overseas, and found it increasingly difficult to align my values with the typical strategic approach that education ministries take – basically, that the solution to underperforming education systems is to blame teachers and find ways of replacing them with newer, shinier teachers who would not be bogged down with all that had been before. Don’t get me wrong, without exception those reform programmes were staffed by great people who were all on the side of teachers and wanted the very best for pupils in our schools, but the strategy is doomed from the outset. Continual reactionary initiatives, designed to alienate and castigate existing (and particularly older) teachers in order to wipe out any previous government’s approach, serve only to heighten the teacher retention problem and create a never ending cycle of reinventing wheels.

I always felt (and vigorously argued for at all levels) that the answer lay within the existing workforce. Teachers are extraordinarily devoted to the core reasons why they entered the profession: helping pupils to learn, develop and go on to be able to lead purposeful and meaningful adult lives with autonomy and joy. Teachers will work unusually hard to make this happen – I say that from a point of view of having worked in many different industries and having run many different reform programmes for a whole host of different workforces. Teachers are not a normal cross-section of society – there is something about them; the vocation, I guess. They are more enthusiastic, more driven and more open to improvement than any other group I know of. But initiatives that treat teachers as the problem, or training that patronises, lead — understandably — to a reduction in enthusiasm and commitment.

I wanted to break away from the constraints of having to toe a party line. I wanted to create an environment in which teachers could collaborate and support each other over the long term – free from passing fads, free from short term policy and initiative. Always driven by one simple belief: teachers are intelligent professionals.

A natural place to begin was with my own subject area, mathematics.

Looking at just the UK, for example, around 350,000 people are involved in the teaching of mathematics in the primary, secondary and FE sectors. Every one of these teachers carries out thousands of micro-research experiments, day in, day out. That professional body knows a huge amount about teaching mathematics. Imagine if all of that knowledge could be untapped. Imagine if every one of those teachers knew each other well enough such that they felt no fear in discussing their own struggles in teaching mathematics and such that they could support their colleagues with their own expertise. That’s what I was interested in doing.

One of the projects I used to have responsibility for was the National Centre for Excellence in the Teaching of Mathematics (NCETM). My heart used to sink each year when we held our national conference – hosted on a school day, in central London and in the most extravagantly expensive locations (the Royal Opera House in Covent Garden was a particular insult to schools struggling to buy enough mathematical equipment). These events epitomised the disconnect between real teachers and those who occupied positions of apparent authority over them. In the typical delegate list, a tiny handful of actual teachers were there.

I repeatedly argued for a different way, once suggesting we hold it on a Saturday in Kettering. This was met with such a derisory and mocking response that, when La Salle started running MathsConf, I chose a Saturday in Kettering. Teachers came in their hundreds.

So, I mulled over these issues for a few years and realised the only way to bring about large-scale collaboration was to create a blend of online and face-to-face environments. That’s what led to Complete Mathematics – a club for mathematics teachers to work together, draw on the canon of knowledge that already exists, become friends, and form a long-term, sustainable, free-from-diktat, professional learning network.

H: La Salle Education is underpinned by a belief in the importance of ‘mathematical thinking’ — can you explain what you mean by that term, and why you see it as such a vital skill for students to acquire?

M: I will offer you this quote from my book, Teaching for Mastery:

“I take ‘mathematics’ to mean a way of existing in the universe. Mathematicians are curious in all aspects of their lives. Mathematicians, when faced with a problem, enjoy the state of not yet knowing the resolution (indeed, knowing there may not even be a resolution). Because they are curious, mathematicians, when faced with a problem, ask themselves questions of it. They can specialise, pattern-spot, conjecture, generalise, try to disprove, argue with themselves, monitor their own thinking, reflect and notice how these new encounters have changed them as a human being. That is to say, mathematics is an epistemological model: a way of considering the very nature of knowledge."

“Sadly, in many Western countries, children have been conditioned to believe that mathematics is about wading through questions, getting ‘right’ or ‘wrong’ answers. This is confusing to mathematicians, since it does not represent our domain at all. Mathematicians are not in the business of answering lists of questions. Rather, they meet scenarios and, driven by their curiosity, create their own questions and follow their own lines of enquiry. Many of these lines of enquiry result in unexpected results, but we do not consider these to be ‘wrong’, simply not what we thought would happen. Often, great discoveries in mathematics have resulted from lines of enquiry that lead to unexpected results. Mathematicians enjoy being stuck. They revel in the initial apparent impenetrability of a scenario and understand that by attacking it in a structured way, enlightenment can arise.”

H: How might all teachers promote mathematical thinking in their classroom?

M: I guess the simple answer to that is: be mathematical in front of pupils and give them space to be mathematical too. It takes a little bit of forced stepping out of oneself as a teacher – after all, we are already experts in the mathematics that we want our pupils to grasp, so we need to recognise our view of the mathematics we are talking to pupils about is not the same as their novice view. I like to stand in front of a class and narrate aloud my novice internal monologue. It is, of course, an invented and affected monologue – I am acting. But it is important that novices are shown effective ways of thinking about a mathematical problem. For instance, I might write a problem on the board and say out loud ‘Hmmm, I wonder what this is. I wonder how I might go about resolving this.’

We want pupils to realise that mathematics is not about seeing a problem and instantly knowing how to resolve it. That’s not what life is like for a mathematician – much of our time is spent wondering, struggling, playing around with ideas, testing, breaking, retrying and, sometimes, simply getting lost. We want pupils to realise that mathematics requires purposeful effort and that, with such effort, not only do we arrive at a resolution to the problems we are working on, but we also have a fascinating time getting there.

It is easy to spot the difference between a class in which pupils think of mathematics as being about ticks on a page and a classroom full of pupils who have been conditioned to be mathematical. In the first classroom, when the teacher writes on a question on the board and asks the pupils to work on it, lots of hands shoot up into the air and a chorus of ‘I can’t do it’ is heard. In the mathematical classroom, puzzled faces stare at the problem and pupils think, ‘I can’t do this, yet.’

That ‘yet’ is so important. Pupils realise that mathematicians enjoy being stuck because that is the opportunity to do something meaningful.

Of course, as teachers, it is part of our art that we keep the mathematics that pupils are working on just at the very limits of their current knowledge and understanding – so, although there will always be struggle, that struggle will result in success. And success breeds motivation. The cycle is virtuous.

H: You’ve spoken before about the huge number of non-specialists teaching Maths in schools today. Imagine I am one of them — my line manager has just dropped in and informed me they haven’t managed to recruit and I’ll be teaching Maths next term. What are the most time-efficient and impactful things I could be doing to turn myself into an effective Maths teacher?

M: Perhaps the single most useful (and perhaps most calming) point to note first is that, as a profession, we know a heck of a lot about teaching mathematics and all of that knowledge is there for you to share in. The profession is typified by a willingness to support colleagues. So, to begin, make sure you have really informed guidance to help you in all aspects of your lessons. This is why we built the Complete Mathematics platform – to create a central repository of information about every single lesson. Non-specialist teachers using the platform will find all manner of support materials and exemplification to help them prepare for lessons. Of course, you’ll incrementally become expert too – and, as you do, you can also add your expertise for others to learn from. That’s why the platform is ever-growing.

Get to know mathematics teachers. We are a tremendously friendly bunch, I promise you. Come to a MathsConf, have a drink. Knowing other mathematics teachers means there is always someone to drop an email to or give a call or join a text message group with. We all have tough lessons – even the most experienced, specialist teachers – so knowing that there are friendly mathematics teachers around to bounce ideas off or just have a chat with is a great way of getting comfortable with teaching a new subject.

Don’t reinvent wheels. Spend your time role playing in your mind the pedagogic decisions you will make throughout the lessons that you are teaching tomorrow rather than making resources or writing plans – these all already exist.

Finally, don’t expect to be an expert mathematics teacher from day one. Like all things, it takes time and deliberate practice. By drawing on all the support that exists around you – like Complete Mathematics, MathsConf, and the Teacher CPD College – you’ll be able to deliver effective mathematics lessons whilst continuing to grow and develop your expertise.

H: What are your thoughts on the growth of private tutors in the UK?

M: In the UK, approximately 25% of all pupils aged 8-15 have a regular private tutor for mathematics who provides supplementary education; working on misconceptions, strengthening understanding, consolidating classroom learning, supporting with homework and revision amongst much else.

Clearly, high value is placed on learning by the pupil’s family (who are often sacrificing other things in order to fund the tuition). And it is often assumed by policy makers that 75% of families who do not engage a tutor place a lower value on education. But this just is not true. Time and time again, surveys reveal that the majority of the 75% do indeed want their child to also have supplementary education, but they simply are not able to afford to purchase it.

How can that be right? In what view of the world is that possibly ok?

Here is a tool which clearly helps pupils to excel in mathematics and is clearly an ambition of all families, yet is reserved for just a small minority. Closing the gap would be easy; ban all tuition. But this is not the right thing to do. The right thing to do is to remove all barriers that limit pupils.

Supplementary education is expensive because of the human resource cost. But what if it was possible to bring about all the benefits of a human tutor using a different approach? That’s what we are doing. It does, of course, take an enormous amount of work to create a system which can plan for and devise responses for every single possible twist that can arise when a pupil is learning mathematics – but something being incredibly difficult is no reason for not doing it, in fact for me it is the very reason for doing it!

H: La Salle Education’s mission is to improve mathematics education for all students. What role does technology play in closing the gap between students from the most and least disadvantaged families?

M: Firstly, I’ll say that I do not think that closing the gap between pupils is a useful or right focus. The focus on closing the gap too often morphs into holding the most advanced pupils back – I don’t think this is a helpful thing for humanity. What I am interested in is helping all pupils to excel. All pupils have the potential to excel in mathematics. It cannot be acceptable that some are prevented from doing so. The answer is to remove all barriers that limit pupils. Secondly, I should also say that pretty much everything is a technology – a pencil, the school curriculum, the printed word, etc. Teachers do, and always have, deployed technologies in order to best support their pupils’ learning. And teachers recognise that technologies need to be used critically – technologies should have a purpose in mind.

o, in brief, the purpose of technologies in education is to remove barriers that limit any individual pupil from excelling. Creating such technologies is complex and requires a deep understanding of learning. We shouldn’t stop until all barriers have been broken down.

H: What’s next for La Salle Education?

M: At the most basic level, there are two things that keep me awake at night:

Firstly, the impact that a teacher has on the life of an individual pupil is profound. So, all teachers must be able to continue to grow and develop throughout their careers and have a platform for articulating and testing their own theories.

Secondly, every individual pupil has the potential to excel. So, all barriers that limit them from doing so must be removed.

Next for La Salle? Well, it is to continue to play our small part in helping teachers have a profound impact on pupils and helping pupils to excel.

The three strands of what we do are:

  • Complete Mathematics – a teaching and learning community consisting of an online environment and face-to-face events.
  • The Teacher CPD College – an online repository of self-study courses for teachers
  • The Virtual Mathematics School – a school staffed by virtual tutors to enable all pupils, from all economic backgrounds, to access supplementary education

We will continue to develop these strands – the process of improvement is unending – and continue to work with teachers to ensure we meet their needs. We started with mathematics because mathematics has a liberating impact on an individual’s life, but we are not stopping there. In the future, we’ll support teachers and pupils of other subjects in the same way.

I think it’s worth ending with our mission statement. This is why I go to work in the morning:

“Our mission is simple: we want to improve mathematics education for all pupils.

The reason we are on this mission is also simple: being mathematically literate transforms a life.

Mathematical competence is the foundation for being able to lead an autonomous and rewarding adult life. Being mathematical means being able to overcome challenges and navigate through life with purpose.

All children have the potential to become mathematical. All children have the potential to leave school intellectually equipped to be successful.

La Salle Education exists to help those potentials be realised.”

Look out for the launch of our new #AskMark series, your chance to put your questions to Mark McCourt. Make sure you follow @LaSalleEd on Twitter for updates.